1. Moore BC. The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. J Assoc Res Otolaryngol 2008;9:399–406. PMID:
18855069.
2. Joris PX, Yin TC. Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 1992;91:215–232. PMID:
1737873.
3. Drullman R. Speech intelligibility in noise: relative contribution of speech elements above and below the noise level. J Acoust Soc Am 1995;98:1796–1798. PMID:
7560512.
4. Hopkins K, Moore BC, Stone MA. Effects of moderate cochlear hearing loss on the ability to benefit from temporal fine structure information in speech. J Acoust Soc Am 2008;123:1140–1153. PMID:
18247914.
5. Hopkins K, Moore BC. The importance of temporal fine structure information in speech at different spectral regions for normal-hearing and hearing-impaired subjects. J Acoust Soc Am 2010;127:1595–1608. PMID:
20329859.
6. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science 1995;270:303–304. PMID:
7569981.
7. Won JH, Drennan WR, Rubinstein JT. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. J Assoc Res Otolaryngol 2007;8:384–392. PMID:
17587137.
8. Xu L, Thompson CS, Pfingst BE. Relative contributions of spectral and temporal cues for phoneme recognition. J Acoust Soc Am 2005;117:3255–3267. PMID:
15957791.
9. Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BC. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci U S A 2006;103:18866–18869. PMID:
17116863.
10. Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature 2002;416:87–90. PMID:
11882898.
11. Zeng FG, Nie K, Liu S, Stickney G, Del Rio E, Kong YY, et al. On the dichotomy in auditory perception between temporal envelope and fine structure cues. J Acoust Soc Am 2004;116:1351–1354. PMID:
15478399.
12. Ghitza O. On the upper cutoff frequency of the auditory critical-band envelope detectors in the context of speech perception. J Acoust Soc Am 2001;110(3 Pt 1):1628–1640. PMID:
11572372.
13. Hopkins K, Moore BC. The contribution of temporal fine structure to the intelligibility of speech in steady and modulated noise. J Acoust Soc Am 2009;125:442–446. PMID:
19173429.
14. Qin MK, Oxenham AJ. Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers. J Acoust Soc Am 2003;114:446–454. PMID:
12880055.
15. Oxenham AJ, Bernstein JG, Penagos H. Correct tonotopic representation is necessary for complex pitch perception. Proc Natl Acad Sci U S A 2004;101:1421–1425. PMID:
14718671.
16. Moore BC, Glasberg BR. Factors affecting thresholds for sinusoidal signals in narrow-band maskers with fluctuating envelopes. J Acoust Soc Am 1987;82:69–79. PMID:
3624643.
17. Schooneveldt GP, Moore BC. Comodulation masking release (CMR): effects of signal frequency, flanking-band frequency, masker bandwidth, flanking-band level, and monotic versus dichotic presentation of the flanking band. J Acoust Soc Am 1987;82:1944–1956. PMID:
3429732.
18. Hopkins K, Moore BC. Moderate cochlear hearing loss leads to a reduced ability to use temporal fine structure information. J Acoust Soc Am 2007;122:1055–1068. PMID:
17672653.
19. Ernst SM, Moore BC. Mechanisms underlying the detection of frequency modulation. J Acoust Soc Am 2010;128:3642–3648. PMID:
21218896.
20. Gilbert G, Lorenzi C. The ability of listeners to use recovered envelope cues from speech fine structure. J Acoust Soc Am 2006;119:2438–2444. PMID:
16642856.
21. Ardoint M, Sheft S, Fleuriot P, Garnier S, Lorenzi C. Perception of temporal fine-structure cues in speech with minimal envelope cues for listeners with mild-to-moderate hearing loss. Int J Audiol 2010;49:823–831. PMID:
20666687.
22. Won JH, Lorenzi C, Nie K, Li X, Jameyson EM, Drennan WR, et al. The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulation. J Acoust Soc Am 2012;132:1113–1119. PMID:
22894230.
23. Rubinstein JT, Wilson BS, Finley CC, Abbas PJ. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 1999;127:108–118. PMID:
9925022.
24. Nie K, Stickney G, Zeng FG. Encoding frequency modulation to improve cochlear implant performance in noise. IEEE Trans Biomed Eng 2005;52:64–73. PMID:
15651565.
25. Li X, Nie K, Imennov NS, Won JH, Drennan WR, Rubinstein JT, et al. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants. J Acoust Soc Am 2012;132:3387–3398. PMID:
23145619.
26. Li X, Nie K, Imennov NS, Rubinstein JT, Atlas LE. Improved perception of music with a harmonic based algorithm for cochlear implants. IEEE Trans Neural Syst Rehabil Eng 2013;21:684–694. PMID:
23613083.
27. Zeng FG. Temporal pitch in electric hearing. Hear Res 2002;174:101–106. PMID:
12433401.
28. Oxenham AJ, Bacon SP. Cochlear compression: perceptual measures and implications for normal and impaired hearing. Ear Hear 2003;24:352–366. PMID:
14534407.
29. Gatehouse S, Naylor G, Elberling C. Linear and nonlinear hearing aid fittings--1. Patterns of benefit. Int J Audiol 2006;45:130–152. PMID:
16579490.
30. Moore BC. The choice of compression speed in hearing AIDS: theoretical and practical considerations and the role of individual differences. Trends Amplif 2008;12:103–112. PMID:
18567591.
31. Hopkins K, King A, Moore BC. The effect of compression speed on intelligibility: simulated hearing-aid processing with and without original temporal fine structure information. J Acoust Soc Am 2012;132:1592–1601. PMID:
22978888.
32. Lacher-Fougère S, Demany L. Consequences of cochlear damage for the detection of interaural phase differences. J Acoust Soc Am 2005;118:2519–2526. PMID:
16266172.
33. Moore BC, Sek A. Development of a fast method for determining sensitivity to temporal fine structure. Int J Audiol 2009;48:161–171. PMID:
19085395.