1. Danesh AA, Kaf WA. DPOAEs and contralateral acoustic stimulation and their link to sound hypersensitivity in children with autism. Int J Audiol 2012;51:345–52.
5. Di Girolamo S, Napolitano B, Alessandrini M, Bruno E. Experimental and clinical aspects of the efferent auditory system. Acta Neurochir Suppl 2007;97(Pt 2):419–24.
6. Moore DR. Anatomy and physiology of binaural hearing. Audiology 1991;30:125–34.
7. Pickles JO. Chapter 1 - Auditory pathways: anatomy and physiology. In: Aminoff MJ, Boller F, Swaab DF, editors. Handbook of clinical neurology. Amsterdam: Elsevier;2015. p.3-25.
8. Oppee J, Wei S, Stecker N. Contralateral suppression of distortion product otoacoustic emission in children with auditory processing disorders. J Otol 2014;9:21–6.
10. Dhar S, Hall III JW. Otoacoustic emissions: principles, procedures, and protocols. 2nd ed. San Diego: Plural Publishing;2018.
14. Livesley WJ. Building emotional stability: patient education awareness, and emotion-regulation modules. In: Livesley WJ, editor. Integrated modular treatment for borderline personality disorder: a practical guide to combining effective treatment methods. Cambridge: Cambridge University Press;2017. p.169-80.
15. Fales CL, Barch DM, Rundle MM, Mintun MA, Snyder AZ, Cohen JD, et al. Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol Psychiatry 2008;63:377–84.
16. Komazec Z, Filipović D, Milosević D. Contralateral acoustic suppression of transient evoked otoacoustic emissions--activation of the medial olivocochlear system. Med Pregl 2003;56:124–30.
17. Lisowska G, Smurzynski J, Morawski K, Namyslowski G, Probst R. Influence of contralateral stimulation by two-tone complexes, narrowband and broad-band noise signals on the 2f1-f2 distortion product otoacoustic emission levels in humans. Acta Otolaryngol 2002;122:613–9.
18. Maison S, Micheyl C, Andéol G, Gallégo S, Collet L. Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hear Res 2000;140:111–25.
19. Collet L, Gartner M, Veuillet E, Moulin A, Morgon A. Evoked and spontaneous otoacoustic emissions. A comparison of neonates and adults. Brain Dev 1993;15:249–52.
20. Khalfa S, Bruneau N, Rogé B, Georgieff N, Veuillet E, Adrien JL, et al. Increased perception of loudness in autism. Hear Res 2004;198:87–92.
21. Eisencraft T, de Miranda MF, Schochat E. Comparing middle latency response with and without music. Braz J Otorhinolaryngol 2006;72:465–9.
22. Ibargüen AM, Montoya FS, del Rey AS, Fernandez JMS. Evaluation of the frequency selectivity of contralateral acoustic stimulation on the active mechanisms of the organ of corti by analyzing the changes in the amplitude of transitory evoked otoacoustic emissions and distortion products. J Otolaryngol Head Neck Surg 2008;37:457–62.
23. Kalaiah MK, Nanchirakal JF, Kharmawphlang L, Noronah SC. Contralateral suppression of transient evoked otoacoustic emissions for various noise signals. Hear Balance Commun 2017;15:84–90.
24. Najem F, Ferraro J, Chertoff M. The effect of contralateral pure tones on the compound action potential in humans: efferent tuning curves. J Am Acad Audiol 2016;27:103–16.
25. Namyslowski G, Morawski K, Kossowska I, Lisowska G, Koehler B, Jarosz-Chobot P. Contralateral suppression of TEOAE in diabetic children. Effects of 1.0 kHz and 2.0 kHz pure tone stimulation--preliminary study. Scand Audiol Suppl 2001;30:126–9.
26. Koegel RL, Openden D, Koegel LK. A systematic desensitization paradigm to treat hypersensitivity to auditory stimuli in children with autism in family contexts. Res Pract Pers Sev Disabil 2004;29:122–34.
27. Riga M, Komis A, Maragkoudakis P, Korres G, Danielides V. Objective assessment of subjective tinnitus through contralateral suppression of otoacoustic emissions by white noise; suggested cut-off points. Int J Audiol 2016;55:775–81.
28. Elgueda D, Delano PH. Corticofugal modulation of audition. Curr Opin Physiol 2020;18:73–8.
29. Amirullah NA. Understanding the effect of different suppressor signals and attention on the efferent auditory system [dissertation]. Pahang: International Islamic University Malaysia;2021.
30. Maulin L, Hachulla E, Facon T, Deveaux M, Blétry O, Vanhille P, et al. [Evaluation of primary amyloidosis using scintigraphy with the serum amyloid P component: from diagnosis to prognosis]. Rev Med Interne 1993;14:962French.
32. Miles J, Shelvin M. Applying regression & correlation. London: Sage Publications;2001.
33. Giraud AL, Garnier S, Micheyl C, Lina G, Chays A, Chéry-Croze S. Auditory efferents involved in speech-in-noise intelligibility. Neuroreport 1997;8:1779–83.
34. Micheyl C, Morlet T, Giraud AL, Collet L, Morgon A. Contralateral suppression of evoked otoacoustic emissions and detection of a multitone complex in noise. Acta Otolaryngol 1995;115:178–82.
36. Komis A, Maragkoudakis P, Gkoritsa E, Kandiloros D, Korres S, Ferekidis E, et al. The effect of tinnitus and presbycusis on contralateral suppression of otoacoustic emissions. J Hear Sci 2014;4:9–20.
37. Stuart A, Daughtrey ER. On the relationship between musicianship and contralateral suppression of transient-evoked otoacoustic emissions. J Am Acad Audiol 2016;27:333–44.
38. Irwansyah M. [Pengaruh pelatihan regulasi emosi terhadap kesejahteraan subjektif remaja pondok pesantren] [dissertation]. Malang: Universitas Islam Negeri Maulana Malik Ibrahim;2017. Indonesian.
40. Chabert R, Guitton MJ, Amram D, Uziel A, Pujol R, Lallemant JG, et al. Early maturation of evoked otoacoustic emissions and medial olivocochlear reflex in preterm neonates. Pediatr Res 2006;59:305–8.