1. Kemp DT. Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 1978;64:1386–91.
2. Mauermann M, Uppenkamp S, van Hengel PW, Kollmeier B. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1. J Acoust Soc Am 1999;106:3473–83.
3. Dhar S, Long GR, Talmadge CL, Tubis A. The effect of stimulusfrequency ratio on distortion product otoacoustic emission components. J Acoust Soc Am 2005;117:3766–76.
4. Moulin A, Collet L, Duclaux R. Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 1993;65:193–210.
5. Liberman MC, Puria S, Guinan JJ Jr. The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J Acoust Soc Am 1996;99:3572–84.
6. Guinan JJ Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 2006;27:589–607.
8. James AL. The assessment of olivocochlear function in neonates with real-time distortion product otoacoustic emissions. Laryngoscope 2011;121:202–13.
9. Di Girolamo S, Napolitano B, Alessandrini M, Bruno E. Experimental and clinical aspects of the efferent auditory system. Acta Neurochir Suppl 2007;97(Pt 2):419–24.
10. Wagner W, Heppelmann G, Müller J, Janssen T, Zenner HP. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Hear Res 2007;223:83–92.
11. Wagner W, Heppelmann G, Kuehn M, Tisch M, Vonthein R, Zenner HP. Olivocochlear activity and temporary threshold shift-susceptibility in humans. Laryngoscope 2005;115:2021–8.
12. Müller J, Janssen T, Heppelmann G, Wagner W. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans. J Acoust Soc Am 2005;118:3747–56.
13. Mauermann M, Kollmeier B. Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source. J Acoust Soc Am 2004;116(4 Pt 1):2199–212.
14. Talmadge CL, Long GR, Tubis A, Dhar S. Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 1999;105:275–92.
15. Williams DM, Brown AM. The effect of contralateral broad-band noise on acoustic distortion products from the human ear. Hear Res 1997;104:127–46.
16. Henin S, Thompson S, Abdelrazeq S, Long GR. Changes in amplitude and phase of distortion-product otoacoustic emission fine-structure and separated components during efferent activation. J Acoust Soc Am 2011;129:2068–79.
17. Zhang F, Boettcher FA, Sun XM. Contralateral suppression of distortion product otoacoustic emissions: effect of the primary frequency in Dpgrams. Int J Audiol 2007;46:187–95.
18. Gelfand SA. The contralateral acoustic-reflex threshold. In: Silman S. editor. The acoustic reflex. Orlando, FL: Academic Press;1984. p.137–86.
19. Margolis RH. Detection of hearing impairment with the acoustic stapedius reflex. Ear Hear 1993;14:3–10.
20. Rao KR, Yip P. Discrete cosine transform: algorithms, advantages, applications. San Diego, CA: Academic Press;1990.
22. Johnson TA, Baranowski LG. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure. Ear Hear 2012;33:239–49.
23. Lisowska G, Smurzynski J, Morawski K, Namyslowski G, Probst R. Influence of contralateral stimulation by two-tone complexes, narrow-band and broad-band noise signals on the 2f1-f2 distortion product otoacoustic emission levels in humans. Acta Otolaryngol 2002;122:613–9.
24. Atcherson SR, Martin MJ, Lintvedt R. Contralateral noise has possible asymmetric frequency-sensitive effect on the 2F1-F2 otoacoustic emission in humans. Neurosci Lett 2008;438:107–10.
25. Ozimek E, Wicher A. Changes in distortion product otoacoustic emission caused by contralateral broadband noise. Archi Acoust 2014;39:125–38.
28. He NJ, Schmiedt RA. Fine structure of the 2f1-f2 acoustic distortion product: changes with primary level. J Acoust Soc Am 1993;94:2659–69.
29. Shaffer LA, Withnell RH, Dhar S, Lilly DJ, Goodman SS, Harmon KM. Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity. Ear Hear 2003;24:367–79.